Reg. No. : \qquad
Name : \qquad 10 eb

IV Semester B.C.A. Degree (CBCSS $\%$ OBE - Reqular/Supplementary/ Improvement) Examination, Aprict2023
(2019 Admission Onwardst)
GENERAL AWARENESS.CGURSE

4A14BCA : Discrete Mathematical Structures

Time : 3 Hours

PART-A
(Short Answer)
Answer all questions.

1. Define tautology.
2. Define equivalence relation:
3. How many relations are there on a sel with 'i' elements?

ก̣ enogetni
4. Define Boolean variable.
5. Find the value of x if $x+x=0$.
6. Define Euler path.

PART-B
(Short Essay)
Answer any 6 questions.
$(6 \times 2=12)$
7. Define 'directed multigraphs'.
8. What is a 'decision tree' ?
9. What is 'OR gate'?
10. Determine whether the following statements are true or false: \qquad
a) $0 \in \phi$
b) $\varphi \subset\{0\}$.

Eso sjug A suolishithixヨ (momevorgml
11. Find $A-B$ and $B-A$ if $A=\{1,2,3,4,5\}$ and $B=\{0,3,6\}$.
12. Write and converse and inverse of $\rho \rightarrow 9$
13. What do you mean by fallacy?
14. Define Antisymmetric Relation.

PART-C
$(0=f \times a)$

(Essay)

Answer any 4 questions.
15. Let R be a reflexive and transitive relation. Prove that $R^{n}=R$ for all positive integers n.
16. Explain 'complete graph's' Draw complete graph with rumber of vertices 5 and 6.
17. Prove that an undirected graph has an even number of vertices of odd degree.
18. What is the value of the posttix expression?
$723 *-4$ 个93/+?
8-TMA9
19. Define Cartesian product of two sets. Show that $A \times B \neq B \times A$ with the help of a suitable example.
20. Show that $\neg(p \vee(\neg p \wedge q)$ and $\neg p \wedge \neg q$ are logically equivalent by developing a series of logical equivalences.

PART - D
(Long Essay)
Answer any 2 questions.
($2 \times 5=10$)
21. Let p : "Swimming at the shore is allowed".
q : "Sharks have been spotted near the shore"
Express each of these propositions as sentences
a) $p \wedge q$
b) $p \rightarrow \neg q$
c) $p \leftrightarrow \neg q$
d) $\neg p \rightarrow \neg q$
e) $\neg p \wedge(p \vee \neg q)$.
22. Explain Hamilton circuits with examples. Shows that K_{n} has a Hamilton circuits whenever $\mathrm{n} \geq 3$.
23. Explain Depth First Seaxch method to build a sparining tree with suitable example.
24. State and prove De Morgan's laws and distibutive taws using membership table.

Reg. No. : \qquad
Name: \qquad

IV Semester B.C.A. Degree CBCSS (OBE) Regular/Supplementary/ Improvement Examination, April 2022
 (2019 Admission Onwards)
 GENERAL AWARENESS COURSE
 4A14BCA : Discrete Mathematical Structures

Time : 3 Hours
Max. Marks : 40

> PART - A
> (Short Answer)

Answer all questions.

1. Define set.
2. Define Tautology.
3. Distinct elements of A are mapped into distinct elements of B is called
4. Pictorial representation of a finite partial order on a set is called
5. A graph which allows more than one edge to join a pair of vertices is called a
6. A path of graph G, that includes each edge of G exactly once and intersects each vertex of G at least once is called

> PART - B
(Short Essay)
Answer any 6 questions.
7. Determine the truth table of $\sim p(q p)$.
8. Let p be "He is tall" and q be "He is handsome". Write each of the following statements in symbolic form using p and q :
a) He is tall and handsome.
b) He is neither tall nor handsome.

K22U 1509

9. Find conjunctive normal form of $p(p q)$.
10. Brief note on disjunctive normal form.
11. Prove that $\forall a \in B, a \cdot a=a$.
12. Simplify $z(y+z)(x+y+z)$.
13. Define Tree with example.
14. What is Hamiltonian graph ?

PART - C

(Essay)
Answer any 4 questions.
15. Illustrate the following identities by means of Venn diagrams.
a) $A(B C)=(A B)(A C)$
b) ($\mathrm{A} B$).
16. Write down any three properties of complementation of sets.
17. Define inverse mapping with example.
18. Explain Pigeonhole principle.
19. Explain Travelling salesman's problem.
20. Define BFS for a graph and explain with example.

PART - D
(Long Essay)
Answer any 2 questions.
21. Prove that a graph is connected if and only if it has a spanning tree.
22. Show that (r) ($\mathrm{q} r$) and ($p \mathrm{q}$) r are not logically equivalent.
23. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the sets. Prove that $\mathrm{A}-(\mathrm{B}-\mathrm{C})=(\mathrm{A}-\mathrm{B})-\mathrm{C}$ if and only if $\mathrm{A} \cap \mathrm{C}=\phi$.
24. If $f: A B$ and $g: B C$ are bijections, then prove that g of : $A C$ is also a bijection.

Reg. No. : \qquad
Name : \qquad

K21U 1073

IV Semester B.C.A. Degree CBCSS (OBE) Regular Examination, April 2021 (2019 Admission Only)
 General Awareness Course
 4A 14 BCA : DISCRETE MATHEMATICAL STRUCTURES

Time : 3 Hours
Max. Marks : 40
PART - A
(Short Answer)
Answer all questions.

1. A set with no elements is called \qquad
2. Define proposition.
3. $\mathrm{a} . \mathrm{a}=$?
4. Define onto mapping.
5. Let $G=(V, E)$ be a graph. If the elements of E are ordered pairs of vertices, then the graph G is called \qquad
6. What is planar graph ?

> PART - B
> (Short Essay)

Answer any 6 questions.

7. Determine the truth table of $\sim p(q p)$.
8. Let p be "it is cold" and q be "it is raining". Give a simple verbal sentence which describes each of the following:
a. $\sim p$
b. $\sim p \wedge \sim q$
9. Define Hasse diagram.
10. Define relation from A to B with example.
11. Describe laws of Boolean Algebra.
12. Simplify $F=++A+A B$.
13. Define complete graph with example.
14. What is graph coloring ?

PART - C

(Essay)

Answer any 4 questions.

15. Prove that $(p \wedge q) p$ is tautology.
16. $A=\{1,2\}, B=\{1,2,4,5\}, C=\{5,7,9,10\}$. Find the following:
a) $(A \cup B) \cup C$
b) $(A \cap B) \cap C$
c) $(A \cup B) \cap C$.
17. Prove that the theorem : Let $f: A B$ then $g: B$ be both one-one and onto functions, then gof : A C is also one-one and onto.
18. Simplify $Y=(P+Q)\left(P+Q^{\prime}\right)\left(P^{\prime}+Q\right)$.
19. Prove that K_{5} is non planar graph.
20. The adjacency structure of a graph G is given as $G=[A: B, E ; B: A, E, F, G ; C: D$, G, H; D:C, H; E:A, B; F:G; G:B, C, F; H:C, D].

PART - D
(Long Essay)
Answer any 2 questions.
21. Compare DFS and BFS graph.
22. Describe shortest paths in weighted graphs.
23. Without using truth tables prove that $(\sim p \vee q) \wedge(p \wedge(p \wedge q))=p \wedge q$.
24. Write down the properties of Union operations in sets.

